Hypothetical bias and the role of information in discrete choice experiments

Barbara Fischer ${ }^{1,2}$, Harry Telser ${ }^{1,3}$, Tobias von Rechenberg ${ }^{1}$, Ramon Schaefer ${ }^{4,5}$ and Michael Schlander ${ }^{4,5}$, and the ESPM Project Group ${ }^{5}$ 1 Polynomics AG, Oten, Switzerland
2 Department of Business Administration, University of Zurich, Switzerland 3 Center for Health, Policy and Economics, University of Lucerne, Switzerland
4 German Cancer Research Center (DKFZ) \& University of Heidelberg Germany, 5 Institute for Innovation \& Valuation in Health Care (InnoVal-HC), Wiesbaden, Germany

Introduction \& Background

- measure social preferences for health care interventions - discrete choice experiments usually use hypothetical scenario - respondents might not be familiar with the topic in question - assess the sensitivity of estimated utility weights to the level o information offered to respondents

Methods

- online survey with 1,501 respondents in Switzerland in 2017
- preference formation phase (PFP)
participants are asked about their general attitude towards the main topics of the study
trade-offs in prioritizing health services (age of patients, severity etc.) forming preferences to reduce cognitive burden in discrete choice experiment
discrete choice experiment (DCE)
health insurance contracts offering different coverage of new treatments for chronic diseases participants need to choose 10 times between a standard treatment nd a new treatment
conditional logit model to estimate the utility function
- supplementary questions related to the experiment and the respondent

DCE

- standard treatment and new treatment are characterized by five attributes and each attribute has a set of attribute levels
- prevalence of the disease ranging from 0.002% (ultra-rare disease) up to 5% (common disease)
- health states were described using the EQ-5D-5L scale
- 1,440 potential choice situations ($3 \times 4 \times 10 \times 3 \times 4$)
fractional factorial design based on the D -efficiency criterion to reduce the number of choices to a manageable level
- design with 30 choice situations - divided into 3 blocks - 10 choice situations per respondent Attributes \& Levels

Attribute	Standard Treatment	New Treatment
Age of patients	mainly children, on average 10 years old mainly adults, on average 40 years old mainly elderly, on average 70 years old	
Prevalence	1 in 20 , i.e. about 400,000 people in Switzerland 1 in 200 , i.e. about 40,000 people in Switzerland 1 in 2,000 , i.e. about 4,000 people in Switzerland 1 in 50,000 , i.e. about 160 people in Switzerland	
Health State	slightly impaired moderately impaired moderately impaired severely impaired severely impaired severely impaired very severely impaired very severely impaired very severely impaired very severely impaired	slightly impaired slightly impaired moderately impaired slightly impaired moderately impaired severely impaired slightly impaired moderately impaired severely impaired very severely impaired
Life Expectancy (age of patients)	45 (10), 60 (40), 75 (70)	52 (10), 64 (40), 76 (70) 66 (10), 72 (40), 78 (70) 80 (10), 80 (40), 80 (70)
Cost	no extra cost	60 CHF per year 120 CHF per year 360 CHF per year 600 CHF per year

Example of decision card
Would you be wiling to pay a higher insurance premium for the inclusion of the new treatment
in the benefit package?

	standard treatment	mainly childrent treatment
on average 10 years old		

How much is your health
insurance premium increas
no increase
$(=30$ Swiss francs per month

Results

- respondents who had been informed about the connection between rare diseases and high costs per patient showed no statistically significant mark down for the lowest prevalence rate
- differences between groups

Model 1

- small positive coefficient for prevalence of disease - negative coefficient for ultra-rare diseases (prevalence 0.002%)
- Model 2
respondents who received information on rarity have a higher coefficient for ultra-rare diseases -0.353 vs. $-0.128(=-0.353+0.225)$ respondents who received information on rarity have a higher coefficient (statistically not significant) for prevalence 0.056 vs. $0.079(=0.056+0.023)$

- Model 3

divide the respondents who received information on rarity into those who agree strongly or agree (77%) and those who disagree strongly o disagree or do not know (23%) with the first statement about rare diseases in the PFP (accept higher treatment costs for rare disease patients)
those who agree show no negative markdown for ultra-rare diseases compared to the group without information -0.357 vs. 0.087 ($=-0.357+0.444$)
those who disagree show a larger markdown for ultra-rare diseases compared to the group without information -0.357 vs. $-0.862(=-0.357-0.505)$
respondents grouped according to their answers to statement 2) and 3) show similar results, although a little less pronounced

Coefficients conditional logit model	Model 1	Model 2	Model 3
constant (new treatment)	$-0.222^{* * *}$	$-0.222^{* * *}$	227***
40 year old patients (0/1)	$-0.188^{* * *}$	$-0.188^{* * *}$	$-0.190^{* * *}$
70 year old patients (0/1)	$-0.682^{* * *}$	$-0.681 * * *$	$-0.683^{* * *}$
remaining life years	0.090***	0.090***	0.091***
remaining life years squared	$-0.0016^{* * *}$	-0.0016***	-0.0016***
quality of life (scale 0-10)	$0.131^{* * *}$	0.130***	0.132***
insurance premium per year in CHF	-0.002***	$-0.002^{* * *}$	$-0.002^{* * *}$
ultra-rare disease (0/1)	$-0.243^{* * *}$	$-0.353^{* * *}$	-0.357***
ultra-rare disease \# info rarity		0.225**	
ultra-rare disease \# info rarity \& agree			0.444***
ultra-rare disease \# info rarity \& disagree			-0.505***
prevalence in \%	0.068***	0.056***	0.056***
prevalence in \% \# info rarity		0.023	
prevalence in \% \# info rarity \& agree			0.063***
prevalence in \% \# info rarity \& disagree			$-0.101^{* * *}$
"	977.4	-9770.1	-971.0
observotions	30,20	30,020	30,20

Model 1 with full sample; Model 2 interaction with subgroup that received information on rarity; Model 3 interaction with subgroup that has received information on rarity, divided into those who agree and disagree with statement

1) about rarity in PFP.

Coefficient with 95% conf. interval for ultra-rare disease - model 3
0.4
respondents who had been informed about the connection between rare

Conclusion

raising participants' awareness of certain topics can influence their choices in the DCE

- important for unfamiliar topics where respondents first must form their preferences
results add information about social value of health care interventions for rare and ultra-rare disorders for different groups of the population

