Drivers of Social Value Exceed Length and Quality of Life: Evidence from Switzerland

Introduction \& Background

Empirical Evidence on Social Value Drivers

A Rapidly Growing Literature

\neg Attributes of the Health Condition

\neg individual valuation of health conditions
\neg severity of the condition
\neg unmet medical need
\neg urgency of an intervention
\neg capacity to benefit from an intervention
\neg Attributes of the Persons Afflicted
\neg non-discrimination
(and claims-based approaches)
\neg age (and fair innings)
\neg other patient attributes
ᄀ fairness objectives; aversion against all-or-nothing decisions

Limitations of the Literature:
\neg many studies limited in size and / or scope
\neg many studies likely to be impaired by framing effects
\neg sometimes of questionable methodology
\neg zero sum assumption in many studies
\neg ex ante severity of health state probably best documented attribute ("contextual variable") - but distinct difficulties to quantify effects \neg role of prevalence ("rarity") controversial Cost attribute (payment vehicle in most studies) \neg typically reflecting an individual (selfish) health state valuation (/WTP) perspective,
\urcorner whereas citizens' "social WTP" for coverage of health care programs under a collectively financed health scheme might be more relevant

Governance

ESPM (European Social Preference Measurement) Project Group: Scientific Steering Committee
\checkmark Silvio Garattini (Mario Negri Institute, Milan / Italy)
\neg Sören Holm (U of Manchester / England)
\neg Peter Kolominsky (U of Erlangen / Germany)
ᄀ Deborah Marshall (U of Calgary / Canada)
\neg Erik Nord (U of Oslo / Norway)
\neg Ulf Persson (IHE, Lund / Sweden)
\neg Maarten Postma (U of Groningen / The Netherlands)
\neg Jeffrey Richardson (Monash U, Melbourne / Victoria)
\checkmark Michael Schlander (DKFZ \& U of Heidelberg / Germany)
\neg Steven Simoens (U of Leuven / Belgium)
\urcorner Oriol de Sola-Morales (IISPV, Barcelona / Spain)
\neg Harry Telser (Polynomics / Switzerland)
\neg Keith Tolley (Tolley HE, Buxton / England)
\checkmark Mondher Toumi (U Aix-Marseille / France)

Objectives \& Implementation / Methods

Primary Study Objective

To investigate the valuation of selected attributes (with special attention to the role of "rarity") of health care interventions from a citizen's perspective Study Implementation:

1. Survey Design

ᄀ Initial Preference Formation Phase
ᄀ Discrete Choice Experiment (DCE) D-efficient fractional factorial design, with three blocks of 10 choice situations, each consisting of two alternatives, i.e., standard vs. new treatment
\neg Supplementary Questions (e.g., socioeconomic)
2. Survey Execution
\neg Qualitative Pretest: 10 "think-aloud" interviews
ᄀ Quantitative Pretest: 201 Swiss participants
\neg Main Survey: 1,501 respondents; online panel, representative sample of the Swiss population

Subsamples (to control for framing effects):
Respondents were randomized into 2×2 groups, differing
\neg by one additional item to reflect on the implications of prevalence (rarity; 1:1), and
\neg by information on implied extra cost per patient of new treatment (1:2):

Attributes \& Levels:

Attribute	Standard Treatment	New Treatment
Age of Patients	mainly children, on average 10 years old mainly adults, on average 40 years old mainly elderly, on average 70 years old	
Prevalence [lower rates correspond to definition s of orphan ultra-orphan diseases]	1 in 20 , i.e. about 400,000 people in Switzerland 1 in 200 , i.e. about 40,000 people in Switzerland 1 in 2,000, i.e. about 4,000 people in Switzerland 1 in 50,000 , i.e. about 160 people in Switzerland	
Health State [generic vignettes corresponding to EQ-5D-5L defined health states to facilitate subsequent use of a utility comparator]	slightly impaired moderately impaired moderately impaired severely impaired severely impaired severely impaired very severely impaired very severely impaired very severely impaired very severely impaired	slightly impaired slightly impaired moderately impaired slightly impaired moderately impaired severely impaired slightly impaired moderately impaired severely impaired very severely impaired
Life Expectancy	45 (10), 60 (40), 75 (70)	52 (10), 64 (40), 76 (70)
[depending on age of patients]	$\begin{aligned} & 45(10), 60(40), 75(70) \\ & 45(10), 60(40), 75(70) \end{aligned}$	66 (10), 72 (40), 78 (70) 80 (10), 80 (40), 80 (70)
Cost [defined from a citizen's perspective, i.e., extra premium to mandatory health insurance (OKP)]	no extra cost	$\begin{aligned} & 12 \text { CHF per year (}=1 \text { CHF per month) } \\ & 60 \text { CHF per year (}=5 \text { CHF per month) } \\ & 120 \mathrm{CHF} \text { per year (}=10 \mathrm{CHF} \text { per month) } \\ & 360 \mathrm{CHF} \text { per year (}=30 \mathrm{CHF} \text { per month) } \\ & 600 \mathrm{CHF} \text { per year (}=50 \mathrm{CHF} \text { per month) } \end{aligned}$

Primary Results \& Key Observations

Model Selection:
We estimated a separate model for each attribute investigating how well a linear model specification approximates the flexible function of the dummy model:

Flexible Functional Form (with dummy variables): The figure below illustrates the point estimates with 95% confidence intervals for each attribute level

We used the pure linear model as well as the flexible dummy variable model as benchmark to compare quality of fit measures including the AIC, BIC, and log-likelihood criteria.
The variables mean age of patients and prevalence [\%] required a nonlinear variable specification. Upon testing several specifications, we identified the Main Model for primary analyses. According to the Main Model, the marginal utility for an additional year of life is decreasing with the total number of years.

Interaction Effects:

The interactions indicate a positive relationship between remaining life years and quality of life. A negative relationship between the change of remaining life years and mean age of patients suggests that - from the perspective of citizens the utility of one additional life year is higher for young patients compared to older patients. Finally, the positive relationship between mean age of patients and quality of life indicates that for older people quality of life may be more important than for younger people.

Inclusion of interaction effects did not improve model fit based on BIC. Therefore, we did not include interactions in the Main Model.

The Prevalence Attribute and Framing Effects: The level of information on the implications of prevalence ("rarity") influenced the social value (or valuation) of the attribute.

Both groups showed a decreasing valuation of an intervention with decreasing prevalence of the disorder. This effect was larger than the decrease of prevalence, and by implication the accepted cost per patient increased with rarity. Thus we decided to enhance the Main Survey by a subgroup with additional information on implied cost per patient - which had a relatively small impact on valuation.

Importance of Attributes:
The marginal effect of each variable depends on the overall utility level and is not constant. The variables with the highest impact on choice probability were change in remaining life years, the quality of life index, and insurance premium per year. The negative marginal effect for older people was three times larger compared to middle-aged people. The impact of prevalence was comparable to the age effect.

Conclusions

Our discrete choice experiment (DCE), using a payment vehicle from the citizen's perspective, shows that a representative sample of the Swiss population places value on a broader range of attributes of health care interventions than length and quality of life.

Further analyses are underway to assess the implied social (public) willingness-to-pay, impact on accepted cost per patient, and relation of findings to the conventional logic of cost effectiveness.

