17th World Congress of the International Association for Child and Adolescent Psychiatry and Allied Professionals (IACAPAP)

Melbourne, September 12, 2006

Cost-Effectiveness of Treatment Options for Attention-Deficit/Hyperactivity Disorder (ADHD) in Children and Adolescents

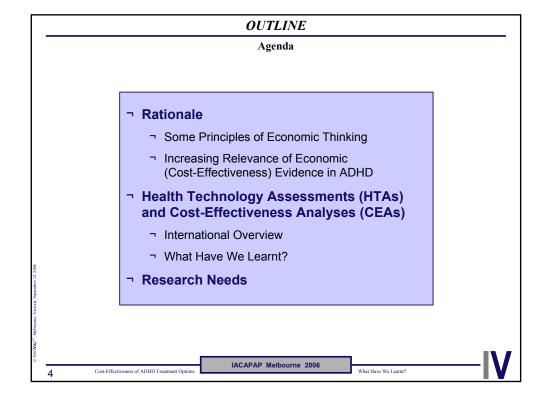
What Have We Learnt?

Michael Schlander

University of Applied Economic Sciences Ludwigshafen (Germany) Institute for Innovation & Valuation in Health Care (INNOVAL HC)

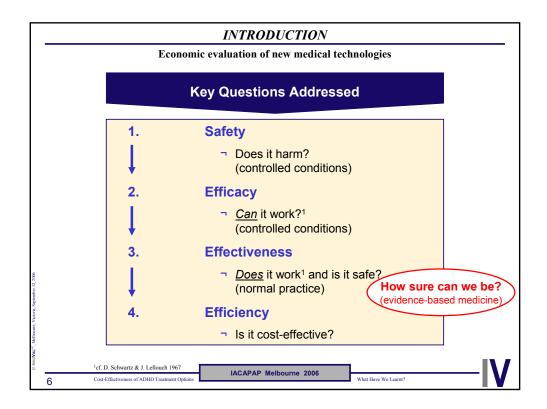
BACKGROUND

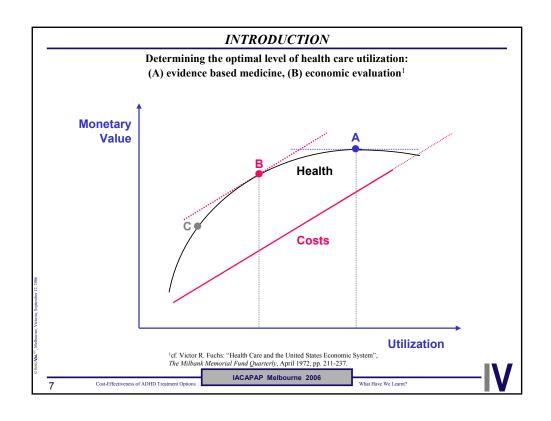
Institutional Background

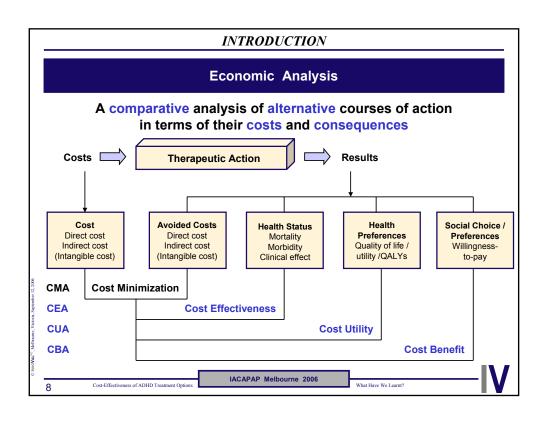

- Institute for Innovation & Valuation in Health Care (INNOVALHC) e.V.
 - ¬ Founded in Aschaffenburg/Germany in June 2005
 - ¬ Formally associated with the University of Applied Economic Sciences Ludwigshafen
 - Independent Not-For-Profit Research Organization (Not a Commercial Contract Research Organization)
 - ¬ Funding of Research Projects

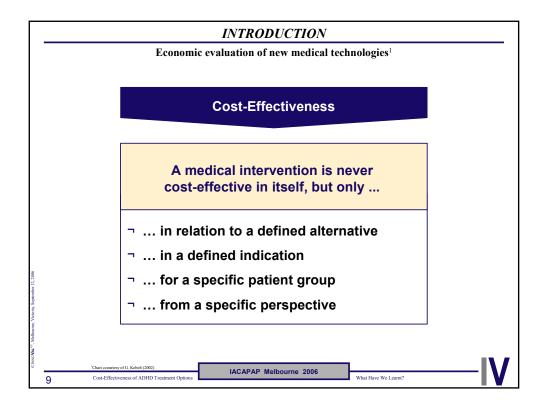
Cost-Effectiveness of ADHD Treatment Options

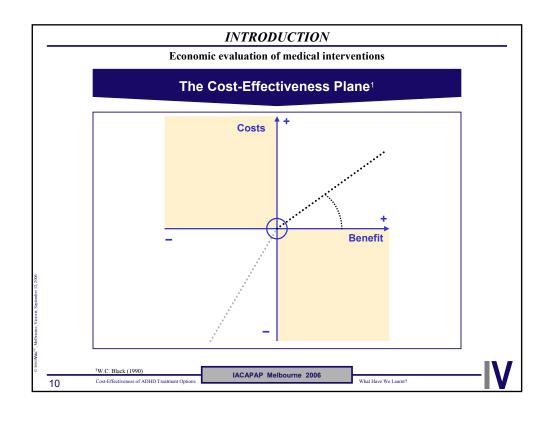
- ¬ Accepted under an "unrestricted educational grant" policy only
- Receiving support from National Institutes of Mental Health (NIMH, Bethesda, Md.), Physician and Payer Organizations (~80% international projects – USA, Canada, United Kingdom, Sweden, Netherlands)
- ¬ Chairman: Prof. Dr. med. Michael Schlander, M.B.A. (Ludwigshafen)
- ¬ Vice-Chairman: Prof. Dr. rer. pol. Oliver Schwarz (Mannheim)

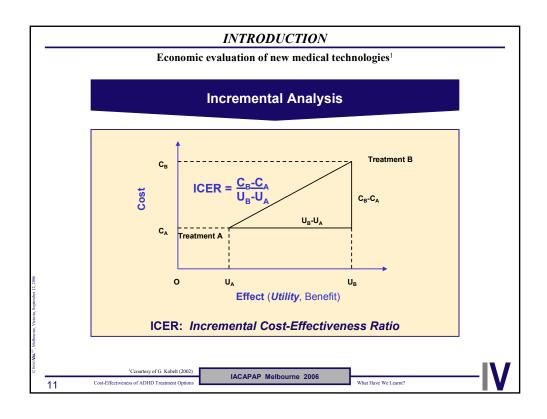

IssoVat¹⁶ Melboune Victoria Sentember 12

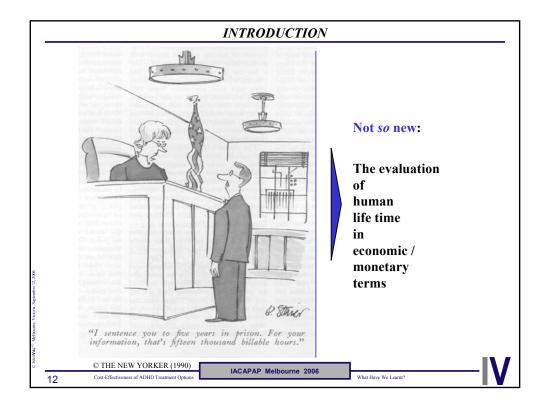




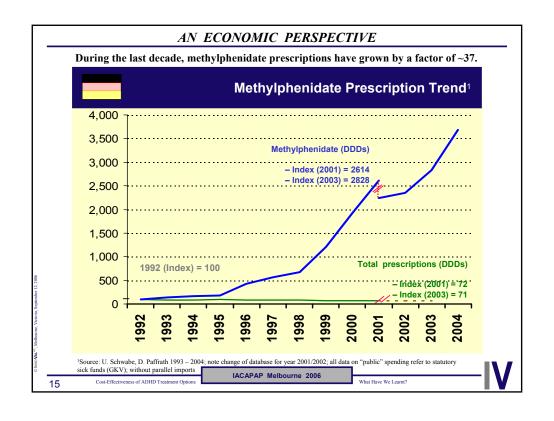

RATIONALE

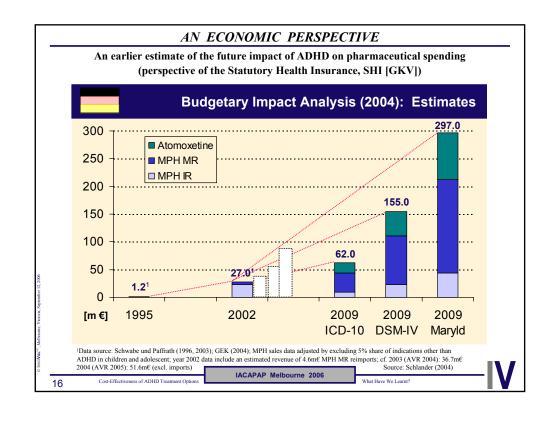

- ¬ Principles of Economic Thinking
- ¬ Increasing Relevance
- ¬ Critical Review
- ¬ What Have We Learnt?
- ¬ An Emerging Pattern?
- ¬ Research Needs











INTRODUCTION Economic evaluation of new medical technologies1 Some Cost-Effectiveness Benchmarks No scientific basis International de facto standards: ¬ New Zealand (PHARMAC): NZ-\$ 20,000 / QALY1 ¬ Australia (PBAC): AUS-\$ 42,000 / LYG to AUS-\$ 76,000 / LYG2 ¬ England and Wales (NICE): £ 20,000 - £ 30,000 / QALY ¬ United States (MCOs): US-\$ 100,000 / QALY3 ¹C. Pritchard (2002); QALY: "quality-adjusted life year"; ²George et al. (2001); LYG: "life year gained" ³D.M. Cutler, M. McClellan (2001) IACAPAP Melbourne 2006 What Have We Learnt? 13

AN ECONOMIC PERSPECTIVE

Explaining the profound increase in expected prescription drug spending

Reasons for Increased Spending on ADHD Treatment

- 1. Growing awareness (education & promotional efforts by industry)
 - ¬ ADHD being diagnosed more frequently (and earlier)
- 2. Growing acceptance of pharmacotherapy
 - More patients receiving pharmacotherapy
- 3. Increasing intensity of pharmacotherapy
 - More prescriptions per diagnosed and treated patient
- 4. Improved therapeutic options
 - Higher unit cost per DDD
- These factors combined exert a **multiplicative effect**, leading to the expectation of a pronounced increase of drug expenditures.
- ¬ Other cost components (including, but not limited to, diagnostic procedures and cognitive-behavioral therapy) are likely to increase as well.

Schlander (2004)

17

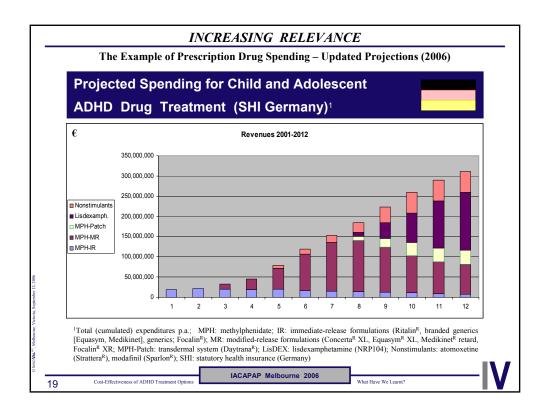
IACAPAP Melbourne 2006

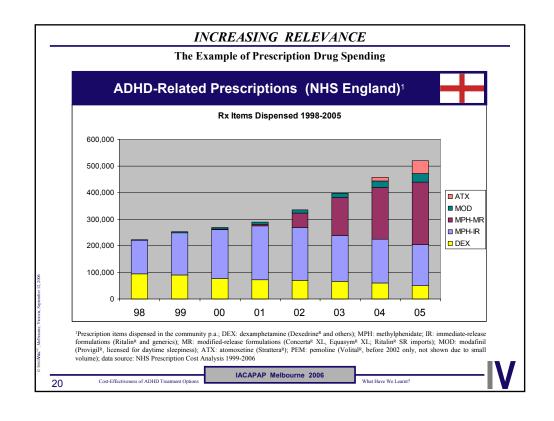
What Have We Learnt's

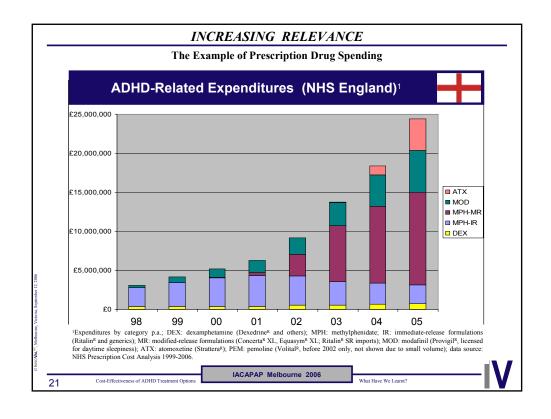
AN ECONOMIC PERSPECTIVE

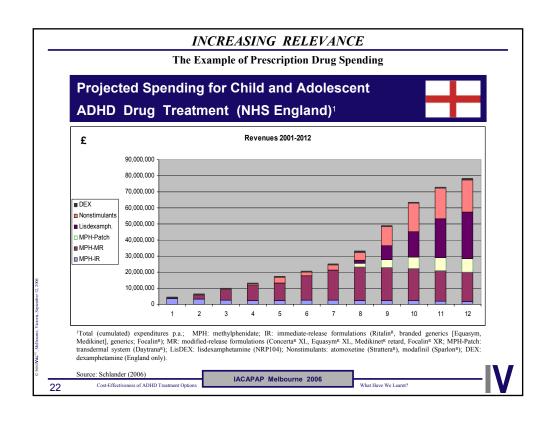
Acquisition costs of important drugs licensed for treatment of ADHD

Prescription Drug Spending: Acquisition Costs ¹							
Trade name	Active ingredient	Abbreviation; DDD	Manufacturer / Distributor	Cost / DDD	Cost / DDD		
DexedrineR	Dexampheta- mine sulphate	DEX 20mg/d	UCB Pharma (UK)	J.	£ 0.42		
Ritalin ^R	Methylphenidate hydrochloride	MPH-IR 30mg (t.i.d.)	Cephalon UK / Novartis	€ 1.58	£ 0.56		
Equasym ^R	Methylphenidate hydrochloride	MPH-IR 30mg (t.i.d.)	UCB Pharma (UK, D)	€ 1.41	£ 0.56		
MPH Generics	Methylphenidate hydrochloride	MPH-IR 30mg (t.i.d.)	TAD (D) (et al.!)	€ 1.13	<< £ 0.56		
Equasym ^R XL Medikinet ^R ret.	Methylphenidate hydrochloride	MPH-MR08 30mg(o.a.d.[?])	UCB Pharma Medice (D only)	n.a. € 2.83	£ 1.17 ./.		
Concerta ^R XL	Methylphenidate hydrochloride	MPH-MR12 36mg (o.a.d.)	Janssen-Cilag Ltd.	€ 2.84	£ 1.23		
Strattera ^R	Atomoxetine hydrochloride	ATX (o.a.d.) [?]	E. Lilly & Company Ltd.	€ 3.69 (o.a.d.) / € 7.38 (b.i.d.)	£ 1.95 (o.a.d.) /£ 3.80 (b.i.d.)		


12005: data sources: UK: British National Formulary (BNF), March 2005 (Equasym XL: September 2005); Germany: Gelbe Liste, September 2005 (N2) IACAPAP Melbourne 2006


What Have We Learnt?


18


Cost-Effectiveness of ADHD Treatment Options

WHAT HAVE WE LEARNT?

- ¬ Principles of Economic Thinking
- Increasing Relevance
- Critical Review
 - ¬ Early HTAs
 - ¬ MTA-Based Cost-Effectiveness Analyses
 - ¬ NICE Technology Appraisal 2006
 - ¬ Further Data
- ¬ What Have We Learnt?
- ¬ An Emerging Pattern?
- ¬ Research Needs

CRITICAL REVIEW

ADHD

Treatment Options¹

- Tevidence-Based Treatment (supported by Clinical Guidelines)
 - ¬ "Multimodal" Treatment Strategy, usually including:
 - ¬ Pharmacotherapy
 - ¬ Psychosocial Treatment (Behavioral Therapy)
- **Other Interventions** (e.g., interventions within the school setting)
- Less-Proven, Complementary and Alternative Medicine
 - ¬ Physical exercises
 - ¬ Neurofeedback
 - ¬ Chelation therapy
 - ¬ Systemic antifungal treatment
 - ¬ Various diets (elimination diets, dietary supplements, vitamins)
 - ¬ Homeopathy, acupuncture, herbal regimens

¹M.D. Rappley, 2005; R. Bussing et al., 2002; L.E. Arnold, *Review* in Ann. N.Y. Acad. Sci., 2001

IACAPAP Melbourne 2006

ADHD

Overview of Cost-Effectiveness Studies of ADHD Treatment Strategies

¬ Comparative Studies Only

- Providing data on costs and effects of at least two alternative treatment strategies, including incremental evaluation
- ¬ Health Technology Assessments (HTAs) including economic evaluation
- ¬ Cost-Effectiveness, Cost-Utility, Cost-Benefit Evaluations

¬ Search Strategy

- ¬ MEDLINE, ebsco, OHE HEED databases
- ¬ Major international scientific meetings (abstracts / presentations)
 - a) psychiatry, child and adolescent psychiatry
 - b) health economics and outcomes research, medical decision-making

25 Cost-Effectiveness of ADHD Treatment Option

IACAPAP Melbourne 2006

What Have We Learnt?

IV

CRITICAL REVIEW

Туре	Basis	Agency / Authors	Juris- diction	Comparison	Effectiveness Measure
HTAs	Literature review	CCOHTA, December 1998 (Zupancic et al., 1998)	CAN	MPH-IR, DEX, PEM; BEH, Comb, NoTx	CTRS (Effect Size / WMD)
	and	NICE, July 2000 (Lord and Paisley, 2000)	UK	MPH-IR, NoTx	QALYs; (also CTRS points)
	decision model	NICE, March 2006 (King et al., 2004, 2006)	UK	DEX, MPH (-IR, -MR08, -MR12), ATX	QALYs based on synth'd. response rates
CEAs	NIMH MTA* Study (1999)	Jensen et al., 2004, 2005	US	CC, BEH, MedMgt, Comb	SNAP-IV Normalization Rates
		Foster et al., 2005, 2006	US	CC, BEH, MedMgt, Comb	Columbia Impairment Scale (CIS)
		Schlander et al., 2004, 2005	US, D	CC, BEH, MedMgt, Comb	SNAP-IV Normalization Rates
	Literature review, model	Narayan and Hay, 2004	US	MPH-IR, MAS ¹ , NoTx	QALYs based on response rates
	Literature, expert opinion	Iskedijan et al., 2003	CAN	MPH-IR, ATX	SFDs – symptom free days
	CCOHTA model (ext'd.)	Annemans and Ingham, 2002	CAN	MPH-MR12, MPH-IR (w/ or w/o NDT?)	CPRS (Effect Size)
	Meta-analysis and model	Donnelly et al., 2004	AUS	MPH-IR, DEX	YLD ² ; DALYs (averted)
	Literature review	Wessex DEC Report 1998, (Gilmore and Milne, 2001)	UK	MPH-IR, Plac.	QALYs based on response rates
	Meta-analysis and decision analytic model (CCOHTA ext'd.)	Schlander et al., 2004	UK	MPH-MR12, MPH-IR (w/ NDT)	CTRS (Effect Size)
		Schlander et al., 2004	D	MPH-MR12, MPH-IR (w/ NDT)	CTRS (Effect Size)

²MAS: mixed amphetmaine salts

Cost-Effectiveness of ADHD Treatment Options

IACAPAP Melbourne 2006

²YLD: years lived with disability What Have We Learnt?

/AL^{HG}, Melboume, Victoria, September 1

V

26

Economic evaluation of ADHD treatment strategies

Early HTAs of ADHD Treatment Strategies

- ¬ CCOHTA (Canada, 1998)¹
 - ¬ Assumed daily dose MPH IR: 2 x 10mg
 - ¬ MPH IR dominated its alternatives
 - ¬ ICER (versus a hypothetical "Do Nothing" alternative):

CAN-\$ 498 / ES (basis CTRS, WMD)

- ¬ Few data on behavioral therapy³.
- ¬ NICE (England and Wales, 2000)²
 - ¬ Assumed daily dose MPH IR: 3 x 10mg
 - ¬ Cost / QALY estimated at £ 9,2000 − £ 14,600

Zupancic et al. (1998): a six-point or one standard deviation (weighted mean) difference was considered clinically relevant, CAN-\$ (1997);
 Lord & S. Paisley (2000; cf. also A. Gilmore & R. Milne (2001): NHS perspective, one-year time horizon, £ (1997);
 ³fewer than 20 patients each for the BEH and COMB strategies.

27

IACAPAP Melbourne 2006

What Have We Learnt's

CRITICAL REVIEW

Economic evaluation of ADHD treatment strategies

The NIMH MTA Study¹

- Randomized Clinical Trial of Treatment Strategies
 - ¬ Psychosocial Treatment Alone [BEH]
 - ¬ Pharmacological Treatment Alone [MM]
 - ¬ Combined Psychosocial and Pharmacological Treatment [COMB]
 - ¬ Community Comparison Group [CC]
- ¬ 579 subjects
 - ¬ entered between January and May of three consecutive years
 - ¬ six sites (in the United States and Canada)
- Treatment for 14 months, follow-up for +22 months
- **Extensive standardization**
 - Treatment manuals
 - Coordinated staff training
 - ¬ Extensive measures of treatment fidelity for all components

¹MTA Cooperative Group 1999a, 1999b Cost-Effectiveness of ADHD Treatment Options

IACAPAP Melbourne 2006

Economic evaluation of ADHD treatment strategies

Effectiveness Data

- Response Rates (SNAP-IV Normalization)
 - ¬ Narrow band symptom scale, integrating parent and teacher scores
 - ¬ Capturing DSM-IV defined core symptoms of ADHD (inattention, hyperactivity/impulsivity; also opposition/defiance)¹
- ¬ Quality-Adjusted Life Year (QALY) Estimates
 - Response rates defined by symptomatic normalization (SNAP-IV)
 - ¬ Health-related quality of life ("utility") weights derived from
 - ¬ Expert estimates ("best case" analysis): $\Delta = 0.117^2$
 - ¬ Parent proxy ratings ("base case" analysis): $\Delta = 0.064^3$
 - Note underlying normative assumption ("extrawelfarism") of QALY maximization; "a QALY is a QALY is a QALY"...
- ¬ Columbia Impairment Scale (CIS) Scores
 - Global measure of impairment, tapping four domains: interpersonal relations, psychopathology, (job or) schoolwork, use of leisure time

¹J. Swanson et al. 2001; ²Lord, S. Paisley 2000; ³D. Coghill et al. 2004

29

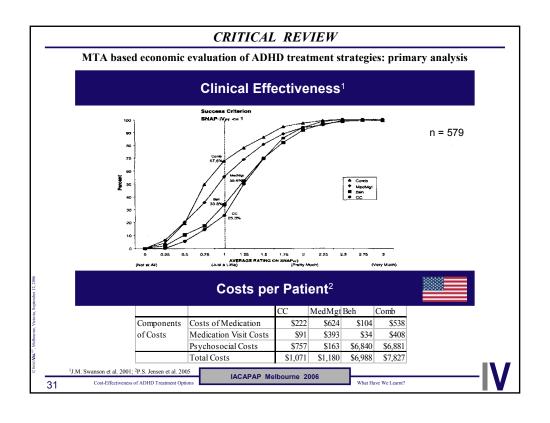
Cost-Effectiveness of ADHD Treatment Option

IACAPAP Melbourne 2006

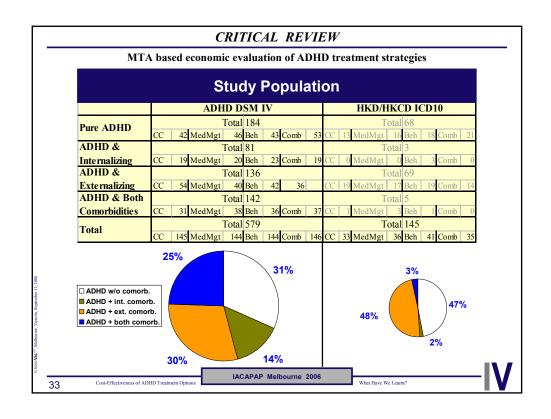
What Have We Learnt?

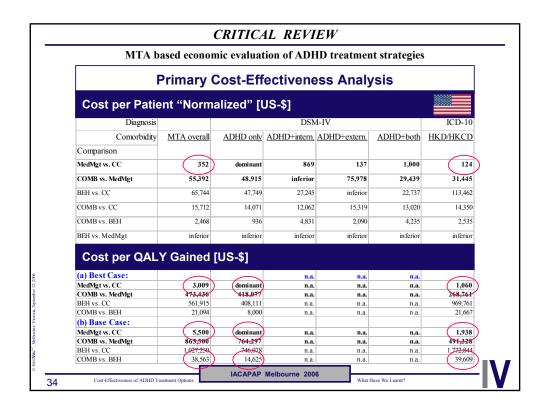
CRITICAL REVIEW

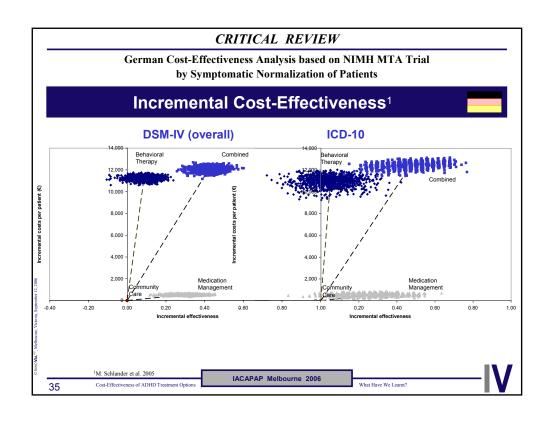
Economic evaluation of ADHD treatment strategies

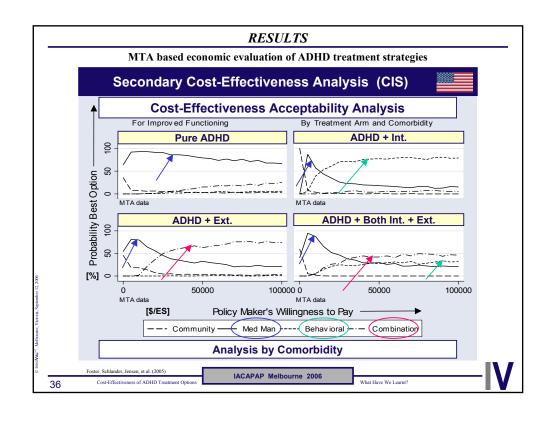

Cost-Effectiveness and Sensitivity Analyses

□ Incremental Cost-Effectiveness Ratios (ICERs)


$$ICER = \frac{C_B - C_A}{U_B - U_A}$$


- □ One- and Two-Way Deterministic Sensitivity Analyses ...
 - ... for various cost assumptions did not change overall results
 - ¬ Details available on request (contact Peter Jensen at Columbia U)
- Probabilistic Sensitivity Analyses
 - Non-parametric bootstrapping using patient-level data
 - ¬ Ellipsoid ICER Confidence Regions / Scatter Plots
 - Reflecting the covariance in cost and effect differences
 - ¬ Cost-Effectiveness Acceptability Curves (CEACs)
 - Representing the probability that a strategy is most costeffective given the MTA data (as a function of "willingness-topay", WTP), taking parameter uncertainty fully into account


D INNOVAL¹¹⁰, Melboume, Victoria, September 12, 2006



RESULTS

MTA based economic evaluation of ADHD treatment strategies

Key Observations

- ¬ A carefully monitored, intense medication management strategy as defined by the MTA protocol is clearly cost-effective¹.
- This observation holds across all subgroups analyzed (by comorbidity and diagnostic criteria) as well as by all measures of effectiveness studied.
- Cost/QALY estimates² are US-\$ 3,000 5,500 for all patients (n=579) and US-\$ 1,000 - <2,000 for patients with hyperkinetic disorder (HKD/HKCD; n=145).
- ¬ Compared to "all" patients and those with "pure" ADHD, behavioral interventions are relatively more cost-effective in terms of achieving improved functioning in patients with more complex comorbidities (both internalizing and externalizing).

Some Limitations

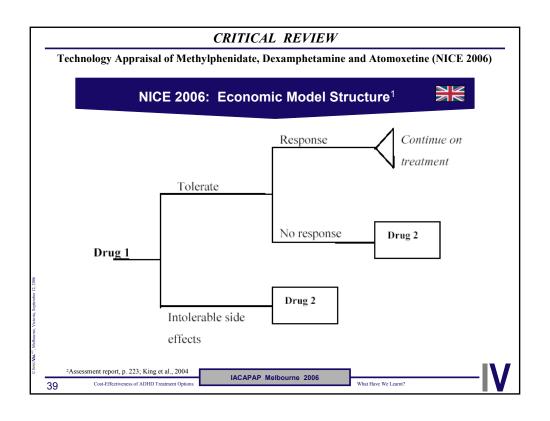
- ¬ Cost-effectiveness of less intense and/or better targeted behavioral interventions?
- ¬ Longer time horizons than employed in our present analyses may modify conclusions, particularly re. the cost-effectiveness of behavioral interventions.
- Normative premises of cost-effectiveness and cost-utility analyses should be kept in mind when interpreting these findings.

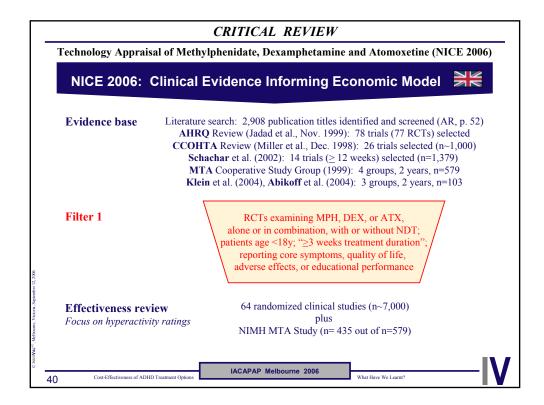
compared to all other interventions tested; 2compared to community treatment; the least attractive cost per QALY estimate may be derived from the subgroup with both comorbidities at an estimated US-S/QALY ranging from 8,550 to 15,600 which by current standards would reflect acceptability, however, costQALY estimates in the presence of comorbidity are difficult to interpret and have, therefore, not been presented.

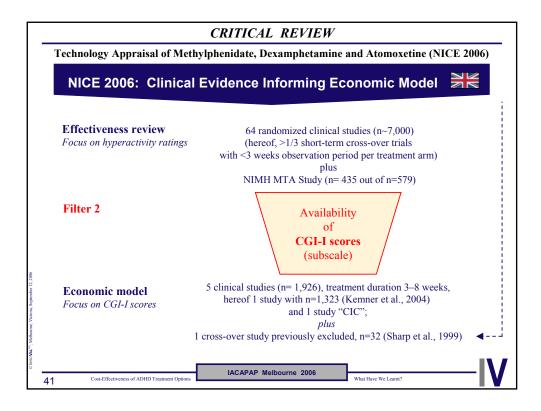
IACAPAP Melbourne 2006

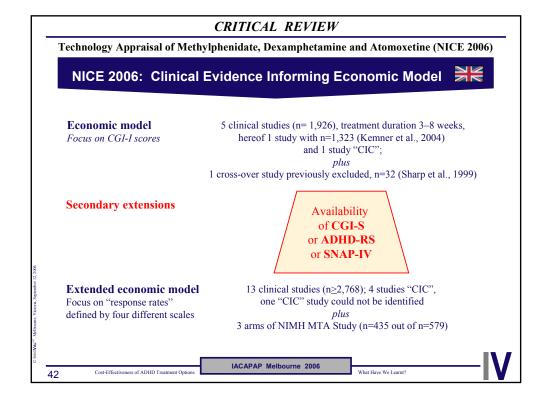
ess of ADHD Treatment Optio

CRITICAL REVIEW


Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006)


NICE Technology Appraisal Process


- ¬ Three (to four) phases
 - Scoping
 - ¬ Assessment
 - Appraisal
 - Appeal (if lodged by one or more consultees)
- ¬ General features


Cost-Effectiveness of ADHD Treatment Options

- ¬ Relatively high degree of transparency
- ¬ Multiple opportunities for stakeholders to provide input
- ¬ Highly standardized ("reference case analysis")
- ¬ Highly predictable nature of process

Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006)

NICE 2006: Economic Model¹

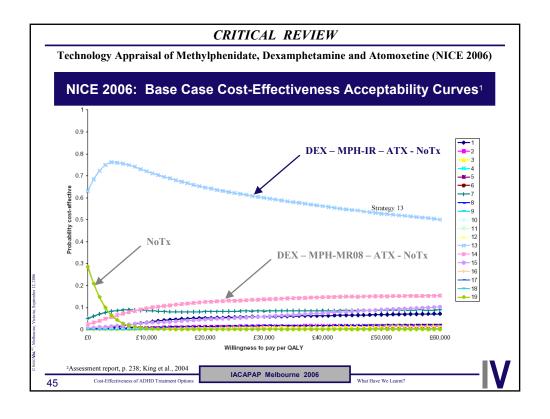
Studies used in the base case analysis

Study	Comp- arators	Study Design	Study Patients	Endpoints used	Notes
Sharp et al., 1999	MPH-IR DEX Plac.	RCT double-blind 3x crossover (3x3 weeks)	n=32 (girls only)	CGI-I	Excluded from effectiveness review (for "inadequate dat presentation"); no data provided in AR; inclusion "initially based on DSM-IIIR, "later" DSM-IV, combined type
Greenhill et al., 2002 (32 sites)	MPH-MR08 Plac.	RCT PG (1:1) double-blind 3 weeks	n=314 (82% male)	CGI-I CGI-S	Primary endpoint: Conners' Teacher Global Index; study listed among MPH-ER medium dose group in AR (average dose 40.7mg/d)
Kemner et al., 2004 ("multiple sites")	ATX MPH-MR12	RCT PG (2:1) open-label 3 weeks	n=1,323 (74% male)	CGI-I ADHS-RS	"CIC" (no data provided in AR);primary endpoint: ADHD-RS improvement (change in mean score): MPH- MR 12 superior to ATX (but included also patients with prior stimulant treatment
Steele et al., 2004, 2006	MPH-IR MPH-MR12	RCT, PG (1:1) open-label, "real-world" design	n=145 (83% male)	CGI-I CGI-S? SNAP-IV	"CIC" (no data provided in AR); primary endpoint: SNAP-IV (18/26 items, parent ratings); real-world effectiveness trial; MPH-MR12 superior to MPH-IR
Pliszka et al., 2000 ;	MPH-IR MAS Plac.	RCT double-blind PG (1:1:1) 3 weeks	n=58 (% males ?)	CGI-I	Primary endpoint: IOWA Conners [*] ratings
Klein and Abikoff, 1997	MPH-IR (w/ and w/o NDT) Plac.	RCT double-blind PG (1:1:1) 8 weeks	n=86 (94% male)	CGI-I	Primary endpoints: CTRS, CPRS; multiple further assessments

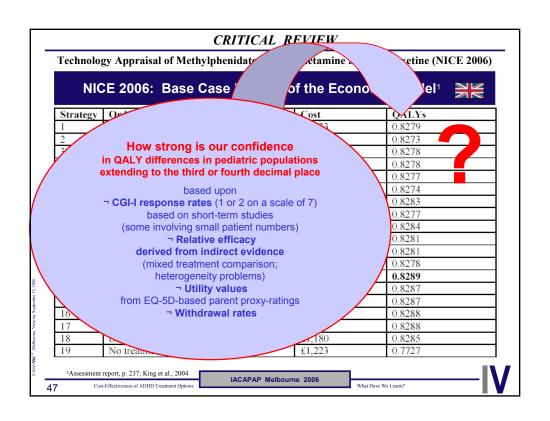
CRITICAL REVIEW

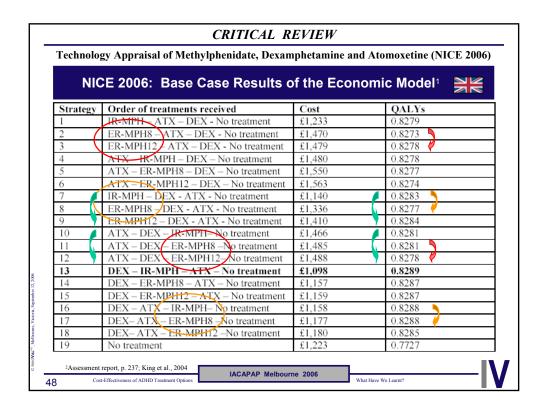
Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006)

NICE 2006: Base Case Results of the Economic Model¹


Strategy	Order of treatments received	Cost	QALYs
1	IR-MPH – ATX – DEX - No treatment	£1,233	0.8279
2	ER-MPH8 - ATX - DEX - No treatment	£1,470	0.8273
3	ER-MPH12 – ATX – DEX - No treatment	£1,479	0.8278
4	ATX – IR-MPH – DEX – No treatment	£1,480	0.8278
5	ATX – ER-MPH8 – DEX – No treatment	£1,550	0.8277
6	ATX – ER-MPH12 – DEX – No treatment	£1,563	0.8274
7	IR-MPH – DEX - ATX - No treatment	£1,140	0.8283
8	ER-MPH8 - DEX - ATX - No treatment	£1,336	0.8277
9	ER-MPH12 – DEX - ATX - No treatment	£1,410	0.8284
10	ATX – DEX – IR-MPH– No treatment	£1,466	0.8281
11	ATX - DEX - ER-MPH8 -No treatment	£1,485	0.8281
12	ATX – DEX – ER-MPH12– No treatment	£1,488	0.8278
13	DEX - IR-MPH - ATX - No treatment	£1,098	0.8289
14	DEX - ER-MPH8 - ATX - No treatment	£1,157	0.8287
15	DEX – ER-MPH12 – ATX – No treatment	£1,159	0.8287
16	DEX – ATX – IR-MPH– No treatment	£1,158	0.8288
17	DEX- ATX - ER-MPH8 -No treatment	£1,177	0.8288
18	DEX-ATX-ER-MPH12-No treatment	£1,180	0.8285
19	No treatment	£1,223	0.7727

²Assessment report, p. 237; King et al., 2004


IACAPAP Melbourne 2006


What Have We Learnt?

43

CRITICAL REVIEW Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006) NICE 2006: Main Conclusions of Assessment¹ Drug therapy seems to be superior to no drug therapy. No significant differences between the various drugs in terms of efficacy or side effects were found – mainly due to lack of evidence. The additional benefits from behavioral therapy (in combination with drug therapy) are uncertain". "Given the lack of evidence for any differences in effectiveness between the drugs, the [economic] model tends to be driven by drug cost, which differ considerably"1. "For a decision taken now, with current available data, the results of the economic model clearly identify an optimal treatment strategy"2 and "this analysis showed that a treatment strategy of 1st line dexamphetamine, followed by 2nd line methylphenidate immediate-release for treatment failures, followed by 3rd line atomoxetine for repeat treatment failures was optimal." 2Assessment report, p. 20; King et al., 2004; IACAPAP Melbourne 2006 AR, p.261 Cost-Effectiveness of ADHD Treatment Option What Have We Learnt?

Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006)

NICE 2006: Appraisal Summary

- Where drug treatment is considered appropriate, methylphenidate, atomoxetine, and dexamphetamine are recommended within their licensed indications.
- There are no significant differences between individual drugs in terms of efficacy or side effects a conclusion derived as a consequence of paucity of evidence used for assessment.
- Given the limited data used to inform response and withdrawal rates, it is not possible to distinguish between the different strategies on the grounds of cost-effectiveness.
- ¬ If there is a choice of more than one appropriate drug, the product with the lowest cost should be prescribed.

_

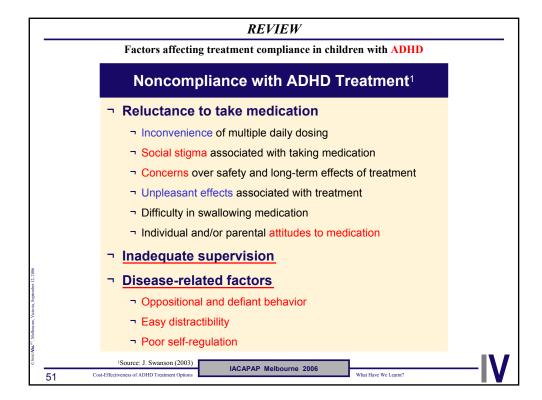
49 Cost-Effectiveness of ADHD Treatment Option

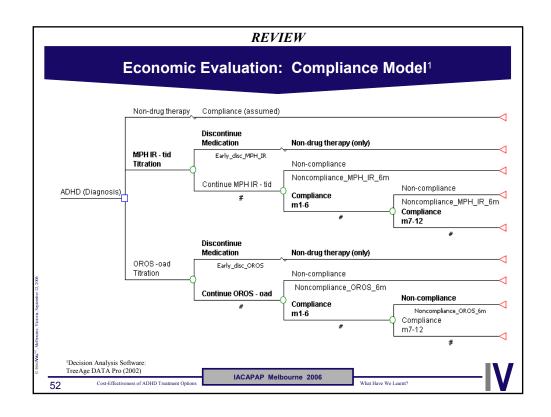
IACAPAP Melbourne 2006

What Have We Learnt?

V

CRITICAL REVIEW


Technology Appraisal of Methylphenidate, Dexamphetamine and Atomoxetine (NICE 2006)


NICE 2006: Appraisal Recommendations

- The decision about choice of intervention should be based on
 - The presence of comorbid conditions (e.g., tic disorders, Tourette's syndrome, epilepsy).
 - ¬ The adverse event profile.
 - ¬ Compliance issues (e.g., the need to administer a mid-day dose at school, and its associated implications).
 - The individual preferences of the patient and/or parent/guardian.

VAL¹⁶, Melboume, Victoria, September 12, 20

IACAPAP Melbourne 2006

REVIEW

Economic evaluation from the perspective of the UK National Health Service (NHS)

Cost-Effectiveness [£ / ES x Year] IOWA Conners Inattention / Overactivity (I/O) Scale

	Base Case ¹		"ADHD" Case ²	
Rating	Teacher	Parent	Teacher	Parent
MPH IR vs. Non-Drug Treatment Only	1,120	1,065	1,208	1,148
MPH MR12 vs. Non-Drug Treatment Only	1,161	1,041	1,161	1,041
MPH MR12 vs. MPH IR	1,345	962 ³	1,041 ³	816 ³

¹Assumptions for base case analysis derived from A.M. Claxton et al. (2001); ²for ADHD case, assuming reduced compliance for MPH IR (according to P. Firestone, 1982);

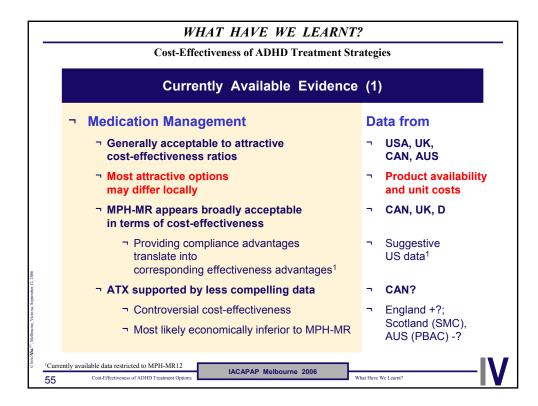
extended dominance MPH OROS over MPH IR

53

IACAPAP Melbourne 2006 s of ADHD Tre

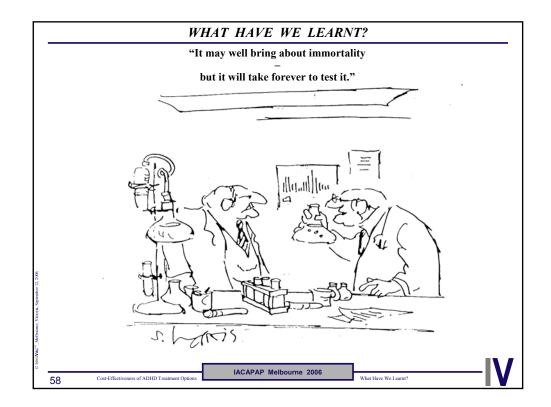
REVIEW

Impact of Treatment Compliance (Persistence)



- ¬ Methylphenidate (MPH) IR t.i.d.
 - alone or in combination with cognitive-behavioral therapy, has been shown to be an effective and cost-effective treatment for ADHD in children, with an estimated ICER of ~ £ 9,200 / QALY (from the UK NHS perspective1);
 - ¬ effectiveness is likely to be impaired by the negative impact of multiple daily dosing, combined with ADHD-specific factors, on treatment adherence.
- ¬ Methylphenidate MR12 o.a.d.
 - ¬ may be expected to improve treatment compliance, resulting in ...
 - ¬ improved clinical effectiveness, translating into ...
 - ¬ an acceptable incremental cost-effectiveness ratio (comparable to MPH IR t.i.d., with ...
 - ¬ extended dominance over MPH IR t.i.d. under a broad range of assumptions).
- Data from modeling studies suggest that MPH-MR12 will play an important role in the effective and cost-effective management of ADHD2.

¹NICE assessment, J. Lord & S. Paisley (2000), and A. Gilmore & R. Milne (2001). For comparison, most recent estimates based on the $MTA\ Study\ indicate\ an\ ICER\ of\ \sim US-\$\ 21,000\ /\ QALY\ from\ the\ U.S.\ societal\ perspective,\ for\ MPH\ OROS\ o.a.d.\ compared\ to\ MPH\ IR$ t.i.d., both in combination with cognitive-behavioral therapy; cf. P. Jensen et al. (2004), M. Schlander et al. 2004).


²Note that <u>limitations</u> of the present analysis include the use of DSM-IV diagnostic criteria, the comparison with MPH IR administered t.i.d. only, and the absence of direct cost/QALY calculations. Real-world data will have to confirm these estimates. IACAPAP Melbourne 2006

Cost-Effectiveness of ADHD Treatment Options

WHAT HAVE WE LEARNT? **Cost-Effectiveness of ADHD Treatment Strategies Currently Available Evidence (2)** Psychosocial Interventions ¬ Few data available Mostly disappointing cost-effectiveness: ¬ Inferior to intense medication management in terms of symptomatic normalization ¬ Mostly inferior to intense medication management in terms of functional improvement May be a cost-effective option for patients with internalizing and (in combination with medication management) externalizing comorbidities at higher levels of willingness-to-pay Data urgently needed on better targeted psychosocial interventions ¬ on impact on long-term outcomes IACAPAP Melbourne 2006 Cost-Effectiveness of ADHD Treatment Options 56 What Have We Learnt's

WHAT HAVE WE LEARNT? **Cost-Effectiveness of ADHD Treatment Strategies** Research Needs ¬ Currently, still no data for many jurisdictions ¬ Assess transferability of existing economic data ¬ Determine relative cost-effectiveness of atomoxetine ¬ Effect of treatment on long-term outcomes ¬ Evaluation of economic implications ¬ Surrogate parameters: which variables might be useful predictors of long-term outcomes (and treatment success) Psychosocial Interventions ¬ Data on cost-effectiveness desperately needed ¬ Assess better targeted interventions (compared to MTA-type strategies) IACAPAP Melbourne 2006 What Have We Learnt? 57

