Incremental Cost-Effectiveness Ratios of Clinically Proven Treatments for Attention-Deficit/Hyperactivity Disorder (ADHD): Impact of Diagnostic Criteria and Comorbidity

Michael Schlander^{1,2}, E. Michael Foster³, Peter S. Jensen⁴, Oliver Schwarz^{2,5}, Joe Albert Garcia⁴, Sherry Glied⁴, Maura Crowe⁴, Eric Taylor⁶, MTA Cooperative Group

¹University for Applied Economic Sciences Ludwigshafen (Germany); ²Institute for Innovation & Valuation in Health Care (INNOVAL^{HC}), Eschborn (Germany); ³Pennsylvania State University, University Park, PA; ⁴Columbia University, New York, NY; ⁵University of Cooperative Education Mannheim (Germany); ⁶King's College, London (England)

TD10

18 Com

3 C

1 C

19 Comb 14 E

41 Comb

Rationale

ADHD is a common disorder in children and adolescents associated with a significant economic burden. Yet, little is known about the cost-effectiveness of therapeutic interventions.

The Multimodal Treatment Study (MTA), cosponsored by the National Institute of Mental Health (NIMH) and the Department of Education, represents the most important randomized trial to date', comparing the effectiveness of clinically proven treatment strategies for ADHD over a period of 14 months (including initial assessment and titration).

Diagnostic criteria (ICD-10 Hyperkinetic Disorder [HKD] and Hyperkinetic Conduct Disorder [HKCD] vs. DSM-IV: AOHD) and comorbidity – frequently present in patients with ADHD – are known moderators of clinical treatment response².

¹MTA Cooperative Group, Arch. Gen Psych., 1999, 56: 1073-1086 and 1088-1096 ²P.S. Jensen et al., J. Am. Acad. Child Adolesc. Psychiatry, 2001, 40: 147-158.

Objectives

To evaluate, based upon the MTA data, the cost-effectiveness of the major proven forms of ADHD treatments:

- the impact of diagnostic criteria and comorbidity on treatment cost-effectiveness;
- the uncertainty around these estimates by means of probabilistic sensitivity analysis:
- the dimension of expected cost / QALY associated with the treatment strategies under study.

Methods

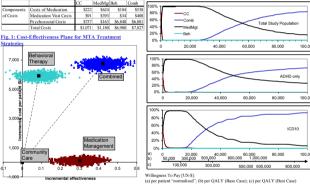
In the MTA study, 579 children with ADHD, combined type, aged 7 to 9.9 years, were assigned to 14 months of

- <u>Community care</u> (treatments by community providers; "<u>CC</u>", n=146); psychotherapeutic treatments and medication (in 67.4%; principality methylphenidate [MPH], mean total daily dose at study completion 22.6mg, averaging 23.3 doses per day).
- Medication management³ (titration followed by monthly visits; "MedMat", n=144): principally MPH, mean total daily dose 37.7mg (3 doses per day),
- <u>Behavioral treatment</u>⁴ (intensive parent, school, and child components, with therapist involvement gradually reduced over time; "<u>Beh</u>", n= 144),
- Or the two (<u>MedMgt</u> and <u>Beh</u>) <u>combined</u> ("<u>Comb</u>", n=145); the medication component again principally

MPH, mean total daily dose 31.2mg (3 doses / day). Patient subgroups were defined by comorbidity (none: "pure" ADHO, or internaizing, externalizing, or both comorbidities, according to DSM-IV) and by recoding according to ICD-10 criteria (HKD, F90.0, or HKCD, F90.1) = see Results: Tab. 1.

Treatment success was evaluated according to ADHD symptom normalization rates (SNAP-IV scale 5 – see Results: Tab. 2).

Direct medical costs, excluding the research component of the study, were calculated based on resource utilization data from the MTA study documentation; unit costs were calculated from the U.S. societal perspective and adjusted to year 2000 dollars using the consumer price index (CPI)⁶.


Utility gains were estimated using data from two studies of health-related quality of life in children with ADHD⁷.

On Indexin Frederick Quality On the Institute for Index (1996) 43: 1204-1313; LL. Greenhill et al., J. Am. Acad. Child Adolses. Psychiatry, 1996, 34: 1304-1313; LL. Greenhill et al., J. Am. Acad. Child Adolses. Psychiatry, 2001, 40: 180-187. Wells et al., J. Ahomani Child Psychology, 2000, 28: 483-506; cf. allos K. Wells J. Clin. Child Psychology, 2001, 30: 131-135. J. M. Swartson et al., J. Am. Acad. Child Adolses. Psychiatry, 2001, 40: 168-179.

*2.nr. owarisch et al., An. J. Psychiatry (2005; In press) *P.S. Jensen et al., An. J. Psychiatry (2005; In press) *Base Case: parent estimates: D. Coghill et al., 16e IACAPAP Congress, Berlin 2005; Best Case: expert estimates: J. Lord, S. Palsley, NICE; London: August 2000.

		ADHD DSM IV							HKD/HKCD IO					ί
Pure ADHD			1	[otal	184						T	otal	68	
	CC	42 Mc	:dMgt	46	Beh	43	Comb	53	CC	13	MedMgt	16	Beh	ĺ
ADHD &			1	ſotal	81						T	otal	3	Î
Internalizing	CC	19 Mc	dMgt	20	Beh	23	Comb	19	CC	0	MedMgt	0	Beh	ĺ
ADHD &			1	ſotal	136						T	otal	69	
Externalizing	CC	54 Me	dMgt	40	Beh	42	36		CC	19	MedMgt	17	Beh	ſ
ADHD & Both				「otal	142						T	otal	5	Ī
Comorbidities	CC	31 Me	dMgt	38	Beh	36	Comb	37	CC	1	MedMgt	3	Beh	ſ
Total			1	ſotal	579								145	
Total	CC	145 Me	dMgt	144	Beh	144	Comb	146	CC	33	MedMgt	36	Beh	

ab. 3: Cost per Patient by Parallel Study Group Fig.2: Cost-Effectiveness Acceptability Curves (CEACs)

Tab. 4: Cost-Effectiveness Results

Tab. 4a: Cost-Effectiveness [US-\$ / patient "normalized"]

Diagnosis			DSN	4-IV		ICD-10
Comorbidity	MTA overall	ADHD only	ADHD+intern.	ADHD+extern.	ADHD+both	HKD/HKCD
Comparison						
MedMgt vs. CC	352	dominant	869	137	1,000	124
COMB vs. MedMgt	55,392	48,915	inferior	75,978	29,439	31,445
BEH vs. CC	65,744	47,749	27,245	inferior	22,737	113,462
COMB vs. CC	15,712	14,071	12,062	15,319	13,020	14,350
COMB vs. BEH	2,468	936	4,831	2,090	4,235	2,535
BEH vs. MedMgt	inferior	inferior	in ferior	inferior	in ferior	inferior

Tab. 4b: Cost-Utility Erstimates [US-\$ / QALY]

(a) Best Case:			n.a.	n.a.	n.a.	
MedMgt vs. CC	3,009	dominant	n.a.	n.a.	n.a.	1,060
COMB vs. MedMgt	473,436	418,077	n.a.	n.a.	n.a.	268,761
BEH vs. CC	561,915	408,111	n.a.	n.a.	n.a.	969,761
COMB vs. BEH	21,094	8,000	n.a.	n.a.	n.a.	21,667
(b) Base Case:						
MedMgt vs. CC	5,500	dominant	n.a.	n.a.	n.a.	1,938
COMB vs. MedMgt	865,500	764,297	n.a.	n.a.	n.a.	491,328
BEH vs. CC	1,027,250	746,078	n.a.	n.a.	n.a.	1,772,844
COMB vs. BEH	38,563	14.625	n.a.	n.a.	n.a.	39,609

Results

P

A

In

C

T

Tab. 2	: MTA Effectiveness Data: "Patient Normal	ization Rates" (SNAP-IV-Scale)					
	ADHD DSM IV	HKD/HKCD ICD10					
ure ADHD	Total 51%	Total 51%					
ure ADHD	CC 31% MedMgt 57% Beh 42% Comb 70%	CC 23% MedMgt 50% Beh 44% Comb 76%					
.DHD &	Total 53%	Total 33%					
nte rnalizing	CC 21% MedMgt 80% Beh 39% Comb 74%	CC - MedMgt - Beh 33% Comb -					
.DHD &	Total 41%	Total 38%					
xternalizing	CC 28% MedMgt 58% Beh 19% Comb 67%	CC 26% MedMgt 53% Beh 16% Comb 64%					
DHD & Both	Total 40%	Total 20%					
omorbidities	CC 16% MedMgt 39% Beh 39% Comb 62%	CC 0% MedMgt 33% Beh 0% Comb -					
otal	Total 46%	Total 43%					
otai	CC 25% MedMgt 56% Beh 34% Comb 68%	CC 24% MedMgt 50% Beh 29% Comb 71%					

Discussion

Based on the MTA study, the MedMgt strategy appears to be clearly cost-effective compared to standard CC for treatment of children with ADHD, dominating the Beh strategy (i.e., it is both cheaper and more effective). This observation holds for all subgroups analyzed.

The cost-utility estimates provided should be interpreted as indicators of dimensions, not as accurate tabulations, since they refer to health-related quality of life research done elsewhere. Therefore, likely ranges are reported instead of "precise" calculations. A key assumption is that ADHD symptom relief translates into improved quality of life. While this is reasonable for pure ADHD, in patients with co-existing morbidity, broader clinical endpoints – than ADHD symptomatology captured with the SNAP-IV scale – would seem more appropriate.

Hence, such analyses have been initiated using the Columbia Impairment Scale (CD)⁴, which overs broader psychopathology and functional domains compared to the SNAP-1V scale. Preliminary results from these analyses suggest a tendency towards somewhat better costeffectiveness of the Beh and Comb strategies, while the MedMgt strategy continues to dominate Beh.

Therefore, this data again confirm the cost-effectiveness results for the MedMgt strategy (compared to routine CC, which itself doublessly represents an effective treatment strategy), with associated cost per QALY estimates failing well within the boundaries of what is commonly accepted.

Though not supported by currently available health economic evidence, a Beh strategy may be preferred in real life by patients, parents and physicians. Therefore cost-effectiveness results are also presented for Beh versus CC and for adding MedMgt to Beh (i.e., Comb vs. Beh), see Tab. 4.

The robustness of the results presented has been confirmed by deterministic (one and two way) and probabilistic sensitivity analyses (cf. Figs. 1 and 2).

Limitations

Limitations of the analyses presented include the time horizon of the study as well as the fact that, as common in studies of this type, process-related utility has not been taken into account, as a result of the consequentialist nature of cost-effectiveness analysis in general.

H. Bird et al., Journal of Methods in Psychiatric Research, 1996, 6:295-308.

Disclaimer:

The opinions and assertions contained in this report are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of Health and Human Services, the National Institutes of Health, or the National Institute of Mental Health.

Correspondence:

Prof. Dr. Michael Schlander, c/o Institute for Innovation & Valuation in Health Care e.V., Rathausplatz 12-14, D-65760 Eschborn/Germany.